MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. 6262 Aluminum

Grade 23 titanium belongs to the titanium alloys classification, while 6262 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is 6262 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 6.7 to 11
4.6 to 10
Fatigue Strength, MPa 470 to 500
90 to 110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 540 to 570
170 to 240
Tensile Strength: Ultimate (UTS), MPa 930 to 940
290 to 390
Tensile Strength: Yield (Proof), MPa 850 to 870
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 340
160
Melting Completion (Liquidus), °C 1610
650
Melting Onset (Solidus), °C 1560
580
Specific Heat Capacity, J/kg-K 560
890
Thermal Conductivity, W/m-K 7.1
170
Thermal Expansion, µm/m-K 9.4
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
44
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
140

Otherwise Unclassified Properties

Base Metal Price, % relative 36
10
Density, g/cm3 4.4
2.8
Embodied Carbon, kg CO2/kg material 38
8.3
Embodied Energy, MJ/kg 610
150
Embodied Water, L/kg 200
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
17 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
530 to 940
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
48
Strength to Weight: Axial, points 58 to 59
29 to 39
Strength to Weight: Bending, points 48
35 to 42
Thermal Diffusivity, mm2/s 2.9
69
Thermal Shock Resistance, points 67 to 68
13 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.5
94.7 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0.040 to 0.14
Copper (Cu), % 0
0.15 to 0.4
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
0 to 0.7
Lead (Pb), % 0
0.4 to 0.7
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0
0 to 0.15
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Silicon (Si), % 0
0.4 to 0.8
Titanium (Ti), % 88.1 to 91
0 to 0.15
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0 to 0.4
0 to 0.15