MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. ASTM A369 Grade FP9

Grade 23 titanium belongs to the titanium alloys classification, while ASTM A369 grade FP9 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is ASTM A369 grade FP9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.7 to 11
20
Fatigue Strength, MPa 470 to 500
160
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
75
Shear Strength, MPa 540 to 570
300
Tensile Strength: Ultimate (UTS), MPa 930 to 940
470
Tensile Strength: Yield (Proof), MPa 850 to 870
240

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 340
600
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1560
1410
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
26
Thermal Expansion, µm/m-K 9.4
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
10

Otherwise Unclassified Properties

Base Metal Price, % relative 36
6.5
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
2.0
Embodied Energy, MJ/kg 610
28
Embodied Water, L/kg 200
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
80
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 58 to 59
17
Strength to Weight: Bending, points 48
17
Thermal Diffusivity, mm2/s 2.9
6.9
Thermal Shock Resistance, points 67 to 68
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
8.0 to 10
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
87.1 to 90.3
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.5 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88.1 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0