MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. EN 1.0234 Steel

Grade 23 titanium belongs to the titanium alloys classification, while EN 1.0234 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is EN 1.0234 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.7 to 11
12 to 29
Fatigue Strength, MPa 470 to 500
170 to 270
Poisson's Ratio 0.32
0.29
Reduction in Area, % 30
64 to 78
Shear Modulus, GPa 40
73
Shear Strength, MPa 540 to 570
260 to 300
Tensile Strength: Ultimate (UTS), MPa 930 to 940
350 to 480
Tensile Strength: Yield (Proof), MPa 850 to 870
220 to 410

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
400
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
53
Thermal Expansion, µm/m-K 9.4
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 4.4
7.9
Embodied Carbon, kg CO2/kg material 38
1.4
Embodied Energy, MJ/kg 610
18
Embodied Water, L/kg 200
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
36 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
130 to 440
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 58 to 59
12 to 17
Strength to Weight: Bending, points 48
14 to 17
Thermal Diffusivity, mm2/s 2.9
14
Thermal Shock Resistance, points 67 to 68
11 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.5
0.020 to 0.060
Carbon (C), % 0 to 0.080
0.13 to 0.17
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
99.02 to 99.5
Manganese (Mn), % 0
0.35 to 0.6
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 88.1 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0