MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. SAE-AISI 1019 Steel

Grade 23 titanium belongs to the titanium alloys classification, while SAE-AISI 1019 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is SAE-AISI 1019 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.7 to 11
17 to 29
Fatigue Strength, MPa 470 to 500
190 to 290
Poisson's Ratio 0.32
0.29
Reduction in Area, % 30
46 to 56
Shear Modulus, GPa 40
73
Shear Strength, MPa 540 to 570
300 to 320
Tensile Strength: Ultimate (UTS), MPa 930 to 940
470 to 520
Tensile Strength: Yield (Proof), MPa 850 to 870
250 to 430

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
400
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
52
Thermal Expansion, µm/m-K 9.4
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 4.4
7.9
Embodied Carbon, kg CO2/kg material 38
1.4
Embodied Energy, MJ/kg 610
18
Embodied Water, L/kg 200
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
82 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
160 to 500
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 58 to 59
17 to 18
Strength to Weight: Bending, points 48
17 to 18
Thermal Diffusivity, mm2/s 2.9
14
Thermal Shock Resistance, points 67 to 68
15 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0.15 to 0.2
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
98.7 to 99.15
Manganese (Mn), % 0
0.7 to 1.0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 88.1 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0