MakeItFrom.com
Menu (ESC)

Grade 23 Titanium vs. N07750 Nickel

Grade 23 titanium belongs to the titanium alloys classification, while N07750 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 23 titanium and the bottom bar is N07750 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 6.7 to 11
25
Fatigue Strength, MPa 470 to 500
520
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 540 to 570
770
Tensile Strength: Ultimate (UTS), MPa 930 to 940
1200
Tensile Strength: Yield (Proof), MPa 850 to 870
820

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 340
960
Melting Completion (Liquidus), °C 1610
1430
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 560
460
Thermal Conductivity, W/m-K 7.1
13
Thermal Expansion, µm/m-K 9.4
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
60
Density, g/cm3 4.4
8.4
Embodied Carbon, kg CO2/kg material 38
10
Embodied Energy, MJ/kg 610
150
Embodied Water, L/kg 200
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61 to 100
270
Resilience: Unit (Modulus of Resilience), kJ/m3 3430 to 3560
1770
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 58 to 59
40
Strength to Weight: Bending, points 48
30
Thermal Diffusivity, mm2/s 2.9
3.3
Thermal Shock Resistance, points 67 to 68
36

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.5
0.4 to 1.0
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 0
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.25
5.0 to 9.0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
70 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.13
0
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 88.1 to 91
2.3 to 2.8
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0