MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. A360.0 Aluminum

Grade 24 titanium belongs to the titanium alloys classification, while A360.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is A360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
72
Elongation at Break, % 11
1.6 to 5.0
Fatigue Strength, MPa 550
82 to 150
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Shear Strength, MPa 610
180
Tensile Strength: Ultimate (UTS), MPa 1010
180 to 320
Tensile Strength: Yield (Proof), MPa 940
170 to 260

Thermal Properties

Latent Heat of Fusion, J/g 410
530
Maximum Temperature: Mechanical, °C 340
170
Melting Completion (Liquidus), °C 1610
680
Melting Onset (Solidus), °C 1560
590
Specific Heat Capacity, J/kg-K 560
900
Thermal Conductivity, W/m-K 7.1
110
Thermal Expansion, µm/m-K 9.6
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
100

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.6
Embodied Carbon, kg CO2/kg material 43
7.8
Embodied Energy, MJ/kg 710
150
Embodied Water, L/kg 310
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
4.6 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
190 to 470
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
53
Strength to Weight: Axial, points 63
19 to 34
Strength to Weight: Bending, points 50
27 to 39
Thermal Diffusivity, mm2/s 2.9
48
Thermal Shock Resistance, points 72
8.5 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
85.8 to 90.6
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
0 to 0.6
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 1.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
9.0 to 10
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.4
0 to 0.25