MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. ACI-ASTM CA6N Steel

Grade 24 titanium belongs to the titanium alloys classification, while ACI-ASTM CA6N steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is ACI-ASTM CA6N steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
17
Fatigue Strength, MPa 550
640
Poisson's Ratio 0.32
0.28
Reduction in Area, % 28
57
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 1010
1080
Tensile Strength: Yield (Proof), MPa 940
1060

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 340
740
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
23
Thermal Expansion, µm/m-K 9.6
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.0

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 43
2.5
Embodied Energy, MJ/kg 710
35
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
180
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
2900
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 63
38
Strength to Weight: Bending, points 50
30
Thermal Diffusivity, mm2/s 2.9
6.1
Thermal Shock Resistance, points 72
40

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.060
Chromium (Cr), % 0
10.5 to 12.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
77.9 to 83.5
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0