MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. AISI 410Cb Stainless Steel

Grade 24 titanium belongs to the titanium alloys classification, while AISI 410Cb stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is AISI 410Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
15
Fatigue Strength, MPa 550
180 to 460
Poisson's Ratio 0.32
0.28
Reduction in Area, % 28
50 to 51
Shear Modulus, GPa 40
76
Shear Strength, MPa 610
340 to 590
Tensile Strength: Ultimate (UTS), MPa 1010
550 to 960
Tensile Strength: Yield (Proof), MPa 940
310 to 790

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 340
730
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1560
1400
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
27
Thermal Expansion, µm/m-K 9.6
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 43
2.0
Embodied Energy, MJ/kg 710
29
Embodied Water, L/kg 310
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
70 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
240 to 1600
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 63
20 to 35
Strength to Weight: Bending, points 50
19 to 28
Thermal Diffusivity, mm2/s 2.9
7.3
Thermal Shock Resistance, points 72
20 to 35

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.18
Chromium (Cr), % 0
11 to 13
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
84.5 to 89
Manganese (Mn), % 0
0 to 1.0
Niobium (Nb), % 0
0.050 to 0.3
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0