MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. ASTM A227 Spring Steel

Grade 24 titanium belongs to the titanium alloys classification, while ASTM A227 spring steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is ASTM A227 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
12
Fatigue Strength, MPa 550
900 to 1160
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
72
Shear Strength, MPa 610
1030 to 1330
Tensile Strength: Ultimate (UTS), MPa 1010
1720 to 2220
Tensile Strength: Yield (Proof), MPa 940
1430 to 1850

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
400
Melting Completion (Liquidus), °C 1610
1450
Melting Onset (Solidus), °C 1560
1410
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
52
Thermal Expansion, µm/m-K 9.6
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 43
1.4
Embodied Energy, MJ/kg 710
19
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
200 to 260
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 63
61 to 79
Strength to Weight: Bending, points 50
41 to 48
Thermal Diffusivity, mm2/s 2.9
14
Thermal Shock Resistance, points 72
55 to 71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0.45 to 0.85
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
97.4 to 99.1
Manganese (Mn), % 0
0.3 to 1.3
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0