MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. ASTM A372 Grade M Steel

Grade 24 titanium belongs to the titanium alloys classification, while ASTM A372 grade M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is ASTM A372 grade M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
18 to 21
Fatigue Strength, MPa 550
450 to 520
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 610
510 to 570
Tensile Strength: Ultimate (UTS), MPa 1010
810 to 910
Tensile Strength: Yield (Proof), MPa 940
660 to 770

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
450
Melting Completion (Liquidus), °C 1610
1460
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
46
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
9.1

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 43
2.0
Embodied Energy, MJ/kg 710
27
Embodied Water, L/kg 310
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
160
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
1140 to 1580
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 63
29 to 32
Strength to Weight: Bending, points 50
24 to 27
Thermal Diffusivity, mm2/s 2.9
12
Thermal Shock Resistance, points 72
24 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.23
Chromium (Cr), % 0
1.5 to 2.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
92.5 to 95.1
Manganese (Mn), % 0
0.2 to 0.4
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0
2.8 to 3.9
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0 to 0.080
Residuals, % 0 to 0.4
0