MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. ASTM A387 Grade 2 Steel

Grade 24 titanium belongs to the titanium alloys classification, while ASTM A387 grade 2 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is ASTM A387 grade 2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
25
Fatigue Strength, MPa 550
190 to 250
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 610
300 to 350
Tensile Strength: Ultimate (UTS), MPa 1010
470 to 550
Tensile Strength: Yield (Proof), MPa 940
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 340
420
Melting Completion (Liquidus), °C 1610
1470
Melting Onset (Solidus), °C 1560
1420
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
45
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.3

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 43
1.6
Embodied Energy, MJ/kg 710
20
Embodied Water, L/kg 310
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
180 to 320
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 63
16 to 20
Strength to Weight: Bending, points 50
17 to 19
Thermal Diffusivity, mm2/s 2.9
12
Thermal Shock Resistance, points 72
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0.050 to 0.21
Chromium (Cr), % 0
0.5 to 0.8
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
97.1 to 98.3
Manganese (Mn), % 0
0.55 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.6
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.15 to 0.4
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0