MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. CC331G Bronze

Grade 24 titanium belongs to the titanium alloys classification, while CC331G bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is CC331G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
20
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 1010
620
Tensile Strength: Yield (Proof), MPa 940
240

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 340
220
Melting Completion (Liquidus), °C 1610
1060
Melting Onset (Solidus), °C 1560
1000
Specific Heat Capacity, J/kg-K 560
440
Thermal Conductivity, W/m-K 7.1
61
Thermal Expansion, µm/m-K 9.6
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
14

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.3
Embodied Carbon, kg CO2/kg material 43
3.2
Embodied Energy, MJ/kg 710
53
Embodied Water, L/kg 310
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
97
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
250
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 63
21
Strength to Weight: Bending, points 50
19
Thermal Diffusivity, mm2/s 2.9
17
Thermal Shock Resistance, points 72
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
8.5 to 10.5
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
83 to 86.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
1.5 to 3.5
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 1.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.4
0