MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. C12500 Copper

Grade 24 titanium belongs to the titanium alloys classification, while C12500 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is C12500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11
1.5 to 50
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Shear Strength, MPa 610
150 to 220
Tensile Strength: Ultimate (UTS), MPa 1010
220 to 420
Tensile Strength: Yield (Proof), MPa 940
75 to 390

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 340
200
Melting Completion (Liquidus), °C 1610
1080
Melting Onset (Solidus), °C 1560
1070
Specific Heat Capacity, J/kg-K 560
390
Thermal Conductivity, W/m-K 7.1
350
Thermal Expansion, µm/m-K 9.6
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
92
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
93

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 43
2.6
Embodied Energy, MJ/kg 710
41
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
5.6 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
24 to 660
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 63
6.9 to 13
Strength to Weight: Bending, points 50
9.1 to 14
Thermal Diffusivity, mm2/s 2.9
100
Thermal Shock Resistance, points 72
7.8 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Antimony (Sb), % 0
0 to 0.0030
Arsenic (As), % 0
0 to 0.012
Bismuth (Bi), % 0
0 to 0.0030
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
99.88 to 100
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0
Lead (Pb), % 0
0 to 0.0040
Nickel (Ni), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Tellurium (Te), % 0
0 to 0.025
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0 to 0.3