MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. C51100 Bronze

Grade 24 titanium belongs to the titanium alloys classification, while C51100 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is C51100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
2.5 to 50
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
42
Shear Strength, MPa 610
230 to 410
Tensile Strength: Ultimate (UTS), MPa 1010
330 to 720
Tensile Strength: Yield (Proof), MPa 940
93 to 700

Thermal Properties

Latent Heat of Fusion, J/g 410
200
Maximum Temperature: Mechanical, °C 340
190
Melting Completion (Liquidus), °C 1610
1060
Melting Onset (Solidus), °C 1560
970
Specific Heat Capacity, J/kg-K 560
380
Thermal Conductivity, W/m-K 7.1
84
Thermal Expansion, µm/m-K 9.6
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
20

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 43
3.0
Embodied Energy, MJ/kg 710
48
Embodied Water, L/kg 310
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
18 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
38 to 2170
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 63
10 to 22
Strength to Weight: Bending, points 50
12 to 20
Thermal Diffusivity, mm2/s 2.9
25
Thermal Shock Resistance, points 72
12 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
93.8 to 96.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0.030 to 0.35
Tin (Sn), % 0
3.5 to 4.9
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0 to 0.4
0 to 0.5