MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. C71500 Copper-nickel

Grade 24 titanium belongs to the titanium alloys classification, while C71500 copper-nickel belongs to the copper alloys. There are 23 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is C71500 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
140
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
52
Tensile Strength: Ultimate (UTS), MPa 1010
380 to 620

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 340
260
Melting Completion (Liquidus), °C 1610
1240
Melting Onset (Solidus), °C 1560
1170
Specific Heat Capacity, J/kg-K 560
400
Thermal Conductivity, W/m-K 7.1
28
Thermal Expansion, µm/m-K 9.6
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
4.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
4.7

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 43
5.1
Embodied Energy, MJ/kg 710
74
Embodied Water, L/kg 310
280

Common Calculations

Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 63
12 to 19
Strength to Weight: Bending, points 50
13 to 18
Thermal Diffusivity, mm2/s 2.9
7.7
Thermal Shock Resistance, points 72
12 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
63.5 to 70.6
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0.4 to 1.0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
29 to 33
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0 to 0.4
0 to 0.5