MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. C82500 Copper

Grade 24 titanium belongs to the titanium alloys classification, while C82500 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11
1.0 to 20
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
45
Tensile Strength: Ultimate (UTS), MPa 1010
550 to 1100
Tensile Strength: Yield (Proof), MPa 940
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 410
240
Maximum Temperature: Mechanical, °C 340
280
Melting Completion (Liquidus), °C 1610
980
Melting Onset (Solidus), °C 1560
860
Specific Heat Capacity, J/kg-K 560
390
Thermal Conductivity, W/m-K 7.1
130
Thermal Expansion, µm/m-K 9.6
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
20
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
21

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.8
Embodied Carbon, kg CO2/kg material 43
10
Embodied Energy, MJ/kg 710
160
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
11 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
400 to 4000
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 63
18 to 35
Strength to Weight: Bending, points 50
17 to 27
Thermal Diffusivity, mm2/s 2.9
38
Thermal Shock Resistance, points 72
19 to 38

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0 to 0.15
Beryllium (Be), % 0
1.9 to 2.3
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.1
Cobalt (Co), % 0
0.15 to 0.7
Copper (Cu), % 0
95.3 to 97.8
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Nickel (Ni), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0.2 to 0.35
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 87.5 to 91
0 to 0.12
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0 to 0.4
0 to 0.5