MakeItFrom.com
Menu (ESC)

Grade 24 Titanium vs. N08031 Stainless Steel

Grade 24 titanium belongs to the titanium alloys classification, while N08031 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 24 titanium and the bottom bar is N08031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 11
45
Fatigue Strength, MPa 550
290
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
81
Shear Strength, MPa 610
510
Tensile Strength: Ultimate (UTS), MPa 1010
730
Tensile Strength: Yield (Proof), MPa 940
310

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 340
1100
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1560
1390
Specific Heat Capacity, J/kg-K 560
460
Thermal Conductivity, W/m-K 7.1
12
Thermal Expansion, µm/m-K 9.6
18

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.1
Embodied Carbon, kg CO2/kg material 43
7.1
Embodied Energy, MJ/kg 710
96
Embodied Water, L/kg 310
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
270
Resilience: Unit (Modulus of Resilience), kJ/m3 4160
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 63
25
Strength to Weight: Bending, points 50
22
Thermal Diffusivity, mm2/s 2.9
3.1
Thermal Shock Resistance, points 72
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.015
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 0
1.0 to 1.4
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
29 to 36.9
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
30 to 32
Nitrogen (N), % 0 to 0.050
0.15 to 0.25
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 87.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0