MakeItFrom.com
Menu (ESC)

Grade 25 Titanium vs. 5005 Aluminum

Grade 25 titanium belongs to the titanium alloys classification, while 5005 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 25 titanium and the bottom bar is 5005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 11
1.1 to 23
Fatigue Strength, MPa 550
38 to 86
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
26
Shear Strength, MPa 600
70 to 130
Tensile Strength: Ultimate (UTS), MPa 1000
110 to 230
Tensile Strength: Yield (Proof), MPa 940
41 to 210

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 340
180
Melting Completion (Liquidus), °C 1610
650
Melting Onset (Solidus), °C 1560
630
Specific Heat Capacity, J/kg-K 560
900
Thermal Conductivity, W/m-K 7.1
200
Thermal Expansion, µm/m-K 9.6
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
52
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
170

Otherwise Unclassified Properties

Density, g/cm3 4.5
2.7
Embodied Carbon, kg CO2/kg material 43
8.3
Embodied Energy, MJ/kg 700
150
Embodied Water, L/kg 320
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
2.3 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 4220
12 to 320
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 62
11 to 23
Strength to Weight: Bending, points 50
19 to 31
Thermal Diffusivity, mm2/s 2.8
82
Thermal Shock Resistance, points 71
4.9 to 10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
97 to 99.5
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.4
0 to 0.7
Magnesium (Mg), % 0
0.5 to 1.1
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0.3 to 0.8
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.3
Titanium (Ti), % 86.7 to 90.6
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0 to 0.4
0 to 0.15