MakeItFrom.com
Menu (ESC)

Grade 25 Titanium vs. ACI-ASTM CA15 Steel

Grade 25 titanium belongs to the titanium alloys classification, while ACI-ASTM CA15 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 25 titanium and the bottom bar is ACI-ASTM CA15 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
21
Fatigue Strength, MPa 550
370
Poisson's Ratio 0.32
0.28
Reduction in Area, % 29
34
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 1000
700
Tensile Strength: Yield (Proof), MPa 940
570

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 340
750
Melting Completion (Liquidus), °C 1610
1440
Melting Onset (Solidus), °C 1560
1500
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
25
Thermal Expansion, µm/m-K 9.6
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 43
2.0
Embodied Energy, MJ/kg 700
28
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 4220
820
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 62
25
Strength to Weight: Bending, points 50
23
Thermal Diffusivity, mm2/s 2.8
6.7
Thermal Shock Resistance, points 71
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.080
0 to 0.15
Chromium (Cr), % 0
11.5 to 14
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.4
81.8 to 88.5
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0.3 to 0.8
0 to 1.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 86.7 to 90.6
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0