MakeItFrom.com
Menu (ESC)

Grade 25 Titanium vs. CC380H Copper-nickel

Grade 25 titanium belongs to the titanium alloys classification, while CC380H copper-nickel belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 25 titanium and the bottom bar is CC380H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 11
26
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
47
Tensile Strength: Ultimate (UTS), MPa 1000
310
Tensile Strength: Yield (Proof), MPa 940
120

Thermal Properties

Latent Heat of Fusion, J/g 410
220
Maximum Temperature: Mechanical, °C 340
220
Melting Completion (Liquidus), °C 1610
1130
Melting Onset (Solidus), °C 1560
1080
Specific Heat Capacity, J/kg-K 560
390
Thermal Conductivity, W/m-K 7.1
46
Thermal Expansion, µm/m-K 9.6
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
11

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 43
3.8
Embodied Energy, MJ/kg 700
58
Embodied Water, L/kg 320
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
65
Resilience: Unit (Modulus of Resilience), kJ/m3 4220
59
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 62
9.8
Strength to Weight: Bending, points 50
12
Thermal Diffusivity, mm2/s 2.8
13
Thermal Shock Resistance, points 71
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0 to 0.010
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
84.5 to 89
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.4
1.0 to 1.8
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0
1.0 to 1.5
Nickel (Ni), % 0.3 to 0.8
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Silicon (Si), % 0
0 to 0.1
Titanium (Ti), % 86.7 to 90.6
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.4
0