MakeItFrom.com
Menu (ESC)

Grade 25 Titanium vs. C95400 Bronze

Grade 25 titanium belongs to the titanium alloys classification, while C95400 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 25 titanium and the bottom bar is C95400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 11
8.1 to 16
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 1000
600 to 710
Tensile Strength: Yield (Proof), MPa 940
240 to 360

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 340
230
Melting Completion (Liquidus), °C 1610
1040
Melting Onset (Solidus), °C 1560
1030
Specific Heat Capacity, J/kg-K 560
440
Thermal Conductivity, W/m-K 7.1
59
Thermal Expansion, µm/m-K 9.6
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
14

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.2
Embodied Carbon, kg CO2/kg material 43
3.2
Embodied Energy, MJ/kg 700
53
Embodied Water, L/kg 320
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
48 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 4220
250 to 560
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 62
20 to 24
Strength to Weight: Bending, points 50
19 to 22
Thermal Diffusivity, mm2/s 2.8
16
Thermal Shock Resistance, points 71
21 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
10 to 11.5
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
83 to 87
Hydrogen (H), % 0 to 0.013
0
Iron (Fe), % 0 to 0.4
3.0 to 5.0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0.3 to 0.8
0 to 1.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Palladium (Pd), % 0.040 to 0.080
0
Titanium (Ti), % 86.7 to 90.6
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0 to 0.5