MakeItFrom.com
Menu (ESC)

Grade 31 Titanium vs. SAE-AISI 1084 Steel

Grade 31 titanium belongs to the titanium alloys classification, while SAE-AISI 1084 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade 31 titanium and the bottom bar is SAE-AISI 1084 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 20
11
Fatigue Strength, MPa 300
320 to 370
Poisson's Ratio 0.32
0.29
Reduction in Area, % 34
28 to 45
Shear Modulus, GPa 41
72
Shear Strength, MPa 320
470 to 550
Tensile Strength: Ultimate (UTS), MPa 510
780 to 930
Tensile Strength: Yield (Proof), MPa 450
510 to 600

Thermal Properties

Latent Heat of Fusion, J/g 420
240
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1660
1450
Melting Onset (Solidus), °C 1610
1410
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
51
Thermal Expansion, µm/m-K 8.7
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
8.2

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 36
1.4
Embodied Energy, MJ/kg 600
19
Embodied Water, L/kg 230
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
81 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 940
700 to 960
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 32
28 to 33
Strength to Weight: Bending, points 32
24 to 27
Thermal Diffusivity, mm2/s 8.5
14
Thermal Shock Resistance, points 39
25 to 30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0.8 to 0.93
Cobalt (Co), % 0.2 to 0.8
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
98.1 to 98.6
Manganese (Mn), % 0
0.6 to 0.9
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 97.9 to 99.76
0
Residuals, % 0 to 0.4
0