MakeItFrom.com
Menu (ESC)

Grade 31 Titanium vs. SAE-AISI P6 Steel

Grade 31 titanium belongs to the titanium alloys classification, while SAE-AISI P6 steel belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is grade 31 titanium and the bottom bar is SAE-AISI P6 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 510
630 to 1930

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Melting Completion (Liquidus), °C 1660
1460
Melting Onset (Solidus), °C 1610
1420
Specific Heat Capacity, J/kg-K 540
470
Thermal Conductivity, W/m-K 21
43
Thermal Expansion, µm/m-K 8.7
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
7.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
9.0

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 36
1.8
Embodied Energy, MJ/kg 600
24
Embodied Water, L/kg 230
59

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 32
22 to 68
Strength to Weight: Bending, points 32
21 to 44
Thermal Diffusivity, mm2/s 8.5
11
Thermal Shock Resistance, points 39
21 to 63

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.080
0.050 to 0.15
Chromium (Cr), % 0
1.3 to 1.8
Cobalt (Co), % 0.2 to 0.8
0
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
92.9 to 95
Manganese (Mn), % 0
0.35 to 0.7
Nickel (Ni), % 0
3.3 to 3.8
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.1 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 97.9 to 99.76
0
Residuals, % 0 to 0.4
0