MakeItFrom.com
Menu (ESC)

Grade 31 Titanium vs. S15700 Stainless Steel

Grade 31 titanium belongs to the titanium alloys classification, while S15700 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 31 titanium and the bottom bar is S15700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 20
1.1 to 29
Fatigue Strength, MPa 300
370 to 770
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 320
770 to 1070
Tensile Strength: Ultimate (UTS), MPa 510
1180 to 1890
Tensile Strength: Yield (Proof), MPa 450
500 to 1770

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
870
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
16
Thermal Expansion, µm/m-K 8.7
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.6

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 36
3.4
Embodied Energy, MJ/kg 600
47
Embodied Water, L/kg 230
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
17 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 940
640 to 4660
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 32
42 to 67
Strength to Weight: Bending, points 32
32 to 43
Thermal Diffusivity, mm2/s 8.5
4.2
Thermal Shock Resistance, points 39
39 to 63

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.75 to 1.5
Carbon (C), % 0 to 0.080
0 to 0.090
Chromium (Cr), % 0
14 to 16
Cobalt (Co), % 0.2 to 0.8
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
69.6 to 76.8
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
6.5 to 7.7
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.35
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 97.9 to 99.76
0
Residuals, % 0 to 0.4
0