MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. 5086 Aluminum

Grade 35 titanium belongs to the titanium alloys classification, while 5086 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is 5086 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 5.6
1.7 to 20
Fatigue Strength, MPa 330
88 to 180
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
26
Shear Strength, MPa 580
160 to 230
Tensile Strength: Ultimate (UTS), MPa 1000
270 to 390
Tensile Strength: Yield (Proof), MPa 630
110 to 320

Thermal Properties

Latent Heat of Fusion, J/g 420
400
Maximum Temperature: Mechanical, °C 320
190
Melting Completion (Liquidus), °C 1630
640
Melting Onset (Solidus), °C 1580
590
Specific Heat Capacity, J/kg-K 550
900
Thermal Conductivity, W/m-K 7.4
130
Thermal Expansion, µm/m-K 9.3
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
100

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 4.6
2.7
Embodied Carbon, kg CO2/kg material 33
8.8
Embodied Energy, MJ/kg 530
150
Embodied Water, L/kg 170
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
5.8 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
86 to 770
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
50
Strength to Weight: Axial, points 61
28 to 40
Strength to Weight: Bending, points 49
34 to 44
Thermal Diffusivity, mm2/s 3.0
52
Thermal Shock Resistance, points 70
12 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 5.0
93 to 96.3
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
0 to 0.5
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0
0.2 to 0.7
Molybdenum (Mo), % 1.5 to 2.5
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0.2 to 0.4
0 to 0.4
Titanium (Ti), % 88.4 to 93
0 to 0.15
Vanadium (V), % 1.1 to 2.1
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0 to 0.4
0 to 0.15