MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. ACI-ASTM CG3M Steel

Grade 35 titanium belongs to the titanium alloys classification, while ACI-ASTM CG3M steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is ACI-ASTM CG3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 5.6
28
Fatigue Strength, MPa 330
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
79
Tensile Strength: Ultimate (UTS), MPa 1000
580
Tensile Strength: Yield (Proof), MPa 630
270

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1020
Melting Completion (Liquidus), °C 1630
1450
Melting Onset (Solidus), °C 1580
1400
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 7.4
15
Thermal Expansion, µm/m-K 9.3
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
20
Density, g/cm3 4.6
7.9
Embodied Carbon, kg CO2/kg material 33
4.1
Embodied Energy, MJ/kg 530
56
Embodied Water, L/kg 170
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
130
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 61
20
Strength to Weight: Bending, points 49
20
Thermal Diffusivity, mm2/s 3.0
4.1
Thermal Shock Resistance, points 70
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 5.0
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
18 to 21
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
58.9 to 70
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 1.5 to 2.5
3.0 to 4.0
Nickel (Ni), % 0
9.0 to 13
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.4
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 88.4 to 93
0
Vanadium (V), % 1.1 to 2.1
0
Residuals, % 0 to 0.4
0