MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. EN 1.7710 Steel

Grade 35 titanium belongs to the titanium alloys classification, while EN 1.7710 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is EN 1.7710 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 5.6
6.8 to 11
Fatigue Strength, MPa 330
500 to 620
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 1000
930 to 1070
Tensile Strength: Yield (Proof), MPa 630
800 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 420
260
Maximum Temperature: Mechanical, °C 320
440
Melting Completion (Liquidus), °C 1630
1470
Melting Onset (Solidus), °C 1580
1430
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 7.4
41
Thermal Expansion, µm/m-K 9.3
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
3.5
Density, g/cm3 4.6
7.8
Embodied Carbon, kg CO2/kg material 33
2.2
Embodied Energy, MJ/kg 530
30
Embodied Water, L/kg 170
57

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
73 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
1680 to 2970
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 61
33 to 38
Strength to Weight: Bending, points 49
27 to 30
Thermal Diffusivity, mm2/s 3.0
11
Thermal Shock Resistance, points 70
27 to 31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 5.0
0
Carbon (C), % 0 to 0.080
0.12 to 0.18
Chromium (Cr), % 0
1.3 to 1.8
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
95.1 to 97
Manganese (Mn), % 0
0.6 to 1.0
Molybdenum (Mo), % 1.5 to 2.5
0.8 to 1.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.2 to 0.4
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88.4 to 93
0
Vanadium (V), % 1.1 to 2.1
0.15 to 0.25
Residuals, % 0 to 0.4
0