MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. SAE-AISI 1025 Steel

Grade 35 titanium belongs to the titanium alloys classification, while SAE-AISI 1025 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is SAE-AISI 1025 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 5.6
17 to 28
Fatigue Strength, MPa 330
190 to 280
Poisson's Ratio 0.32
0.29
Reduction in Area, % 23
45 to 57
Shear Modulus, GPa 41
73
Shear Strength, MPa 580
290 to 310
Tensile Strength: Ultimate (UTS), MPa 1000
450 to 500
Tensile Strength: Yield (Proof), MPa 630
250 to 420

Thermal Properties

Latent Heat of Fusion, J/g 420
250
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1630
1460
Melting Onset (Solidus), °C 1580
1420
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 7.4
52
Thermal Expansion, µm/m-K 9.3
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 37
1.8
Density, g/cm3 4.6
7.9
Embodied Carbon, kg CO2/kg material 33
1.4
Embodied Energy, MJ/kg 530
18
Embodied Water, L/kg 170
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
80 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
170 to 470
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 61
16 to 18
Strength to Weight: Bending, points 49
17 to 18
Thermal Diffusivity, mm2/s 3.0
14
Thermal Shock Resistance, points 70
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 5.0
0
Carbon (C), % 0 to 0.080
0.22 to 0.28
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
99.03 to 99.48
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 1.5 to 2.5
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.4
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 88.4 to 93
0
Vanadium (V), % 1.1 to 2.1
0
Residuals, % 0 to 0.4
0