MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. SAE-AISI 1084 Steel

Grade 35 titanium belongs to the titanium alloys classification, while SAE-AISI 1084 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is SAE-AISI 1084 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 5.6
11
Fatigue Strength, MPa 330
320 to 370
Poisson's Ratio 0.32
0.29
Reduction in Area, % 23
28 to 45
Shear Modulus, GPa 41
72
Shear Strength, MPa 580
470 to 550
Tensile Strength: Ultimate (UTS), MPa 1000
780 to 930
Tensile Strength: Yield (Proof), MPa 630
510 to 600

Thermal Properties

Latent Heat of Fusion, J/g 420
240
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 1630
1450
Melting Onset (Solidus), °C 1580
1410
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 7.4
51
Thermal Expansion, µm/m-K 9.3
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 37
1.8
Density, g/cm3 4.6
7.8
Embodied Carbon, kg CO2/kg material 33
1.4
Embodied Energy, MJ/kg 530
19
Embodied Water, L/kg 170
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
81 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
700 to 960
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 61
28 to 33
Strength to Weight: Bending, points 49
24 to 27
Thermal Diffusivity, mm2/s 3.0
14
Thermal Shock Resistance, points 70
25 to 30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 5.0
0
Carbon (C), % 0 to 0.080
0.8 to 0.93
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
98.1 to 98.6
Manganese (Mn), % 0
0.6 to 0.9
Molybdenum (Mo), % 1.5 to 2.5
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.4
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 88.4 to 93
0
Vanadium (V), % 1.1 to 2.1
0
Residuals, % 0 to 0.4
0