MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. C95300 Bronze

Grade 35 titanium belongs to the titanium alloys classification, while C95300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is C95300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 5.6
14 to 25
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 41
42
Tensile Strength: Ultimate (UTS), MPa 1000
520 to 610
Tensile Strength: Yield (Proof), MPa 630
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 420
230
Maximum Temperature: Mechanical, °C 320
220
Melting Completion (Liquidus), °C 1630
1050
Melting Onset (Solidus), °C 1580
1040
Specific Heat Capacity, J/kg-K 550
440
Thermal Conductivity, W/m-K 7.4
63
Thermal Expansion, µm/m-K 9.3
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
14

Otherwise Unclassified Properties

Base Metal Price, % relative 37
28
Density, g/cm3 4.6
8.3
Embodied Carbon, kg CO2/kg material 33
3.1
Embodied Energy, MJ/kg 530
52
Embodied Water, L/kg 170
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
73 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
170 to 420
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 61
17 to 21
Strength to Weight: Bending, points 49
17 to 19
Thermal Diffusivity, mm2/s 3.0
17
Thermal Shock Resistance, points 70
19 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 5.0
9.0 to 11
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
86.5 to 90.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
0.8 to 1.5
Molybdenum (Mo), % 1.5 to 2.5
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Silicon (Si), % 0.2 to 0.4
0
Titanium (Ti), % 88.4 to 93
0
Vanadium (V), % 1.1 to 2.1
0
Residuals, % 0 to 0.4
0 to 1.0