MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. N08020 Stainless Steel

Grade 35 titanium belongs to the titanium alloys classification, while N08020 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 5.6
15 to 34
Fatigue Strength, MPa 330
210 to 240
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 580
380 to 410
Tensile Strength: Ultimate (UTS), MPa 1000
610 to 620
Tensile Strength: Yield (Proof), MPa 630
270 to 420

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1630
1410
Melting Onset (Solidus), °C 1580
1360
Specific Heat Capacity, J/kg-K 550
460
Thermal Conductivity, W/m-K 7.4
12
Thermal Expansion, µm/m-K 9.3
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 37
38
Density, g/cm3 4.6
8.2
Embodied Carbon, kg CO2/kg material 33
6.6
Embodied Energy, MJ/kg 530
92
Embodied Water, L/kg 170
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
83 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
180 to 440
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 61
21
Strength to Weight: Bending, points 49
20
Thermal Diffusivity, mm2/s 3.0
3.2
Thermal Shock Resistance, points 70
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 5.0
0
Carbon (C), % 0 to 0.080
0 to 0.070
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0
3.0 to 4.0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
29.9 to 44
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 1.5 to 2.5
2.0 to 3.0
Nickel (Ni), % 0
32 to 38
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.2 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 88.4 to 93
0
Vanadium (V), % 1.1 to 2.1
0
Residuals, % 0 to 0.4
0