MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. N08925 Stainless Steel

Grade 35 titanium belongs to the titanium alloys classification, while N08925 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is N08925 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 5.6
45
Fatigue Strength, MPa 330
310
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
80
Shear Strength, MPa 580
470
Tensile Strength: Ultimate (UTS), MPa 1000
680
Tensile Strength: Yield (Proof), MPa 630
340

Thermal Properties

Latent Heat of Fusion, J/g 420
300
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1630
1460
Melting Onset (Solidus), °C 1580
1410
Specific Heat Capacity, J/kg-K 550
460
Thermal Conductivity, W/m-K 7.4
13
Thermal Expansion, µm/m-K 9.3
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
33
Density, g/cm3 4.6
8.1
Embodied Carbon, kg CO2/kg material 33
6.2
Embodied Energy, MJ/kg 530
84
Embodied Water, L/kg 170
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
250
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 61
23
Strength to Weight: Bending, points 49
21
Thermal Diffusivity, mm2/s 3.0
3.5
Thermal Shock Resistance, points 70
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 5.0
0
Carbon (C), % 0 to 0.080
0 to 0.020
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0
0.8 to 1.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
42.7 to 50.1
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 1.5 to 2.5
6.0 to 7.0
Nickel (Ni), % 0
24 to 26
Nitrogen (N), % 0 to 0.050
0.1 to 0.2
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.2 to 0.4
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88.4 to 93
0
Vanadium (V), % 1.1 to 2.1
0
Residuals, % 0 to 0.4
0