MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. N10624 Nickel

Grade 35 titanium belongs to the titanium alloys classification, while N10624 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is N10624 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 5.6
45
Fatigue Strength, MPa 330
310
Poisson's Ratio 0.32
0.3
Shear Modulus, GPa 41
84
Shear Strength, MPa 580
570
Tensile Strength: Ultimate (UTS), MPa 1000
810
Tensile Strength: Yield (Proof), MPa 630
360

Thermal Properties

Latent Heat of Fusion, J/g 420
320
Maximum Temperature: Mechanical, °C 320
930
Melting Completion (Liquidus), °C 1630
1580
Melting Onset (Solidus), °C 1580
1520
Specific Heat Capacity, J/kg-K 550
410
Thermal Expansion, µm/m-K 9.3
11

Otherwise Unclassified Properties

Base Metal Price, % relative 37
70
Density, g/cm3 4.6
9.0
Embodied Carbon, kg CO2/kg material 33
13
Embodied Energy, MJ/kg 530
170
Embodied Water, L/kg 170
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
300
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
22
Strength to Weight: Axial, points 61
25
Strength to Weight: Bending, points 49
22
Thermal Shock Resistance, points 70
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 5.0
0 to 0.5
Carbon (C), % 0 to 0.080
0 to 0.010
Chromium (Cr), % 0
6.0 to 10
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
5.0 to 8.0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 1.5 to 2.5
21 to 25
Nickel (Ni), % 0
53.9 to 68
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0.2 to 0.4
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 88.4 to 93
0
Vanadium (V), % 1.1 to 2.1
0
Residuals, % 0 to 0.4
0