MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. S32003 Stainless Steel

Grade 35 titanium belongs to the titanium alloys classification, while S32003 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is S32003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 5.6
28
Fatigue Strength, MPa 330
370
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 41
79
Shear Strength, MPa 580
480
Tensile Strength: Ultimate (UTS), MPa 1000
730
Tensile Strength: Yield (Proof), MPa 630
510

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
1010
Melting Completion (Liquidus), °C 1630
1440
Melting Onset (Solidus), °C 1580
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.4
15
Thermal Expansion, µm/m-K 9.3
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 37
14
Density, g/cm3 4.6
7.8
Embodied Carbon, kg CO2/kg material 33
3.0
Embodied Energy, MJ/kg 530
42
Embodied Water, L/kg 170
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
660
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 61
26
Strength to Weight: Bending, points 49
23
Thermal Diffusivity, mm2/s 3.0
4.0
Thermal Shock Resistance, points 70
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 5.0
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
19.5 to 22.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
68.2 to 75.9
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 1.5 to 2.5
1.5 to 2.0
Nickel (Ni), % 0
3.0 to 4.0
Nitrogen (N), % 0 to 0.050
0.14 to 0.2
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.2 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 88.4 to 93
0
Vanadium (V), % 1.1 to 2.1
0
Residuals, % 0 to 0.4
0