MakeItFrom.com
Menu (ESC)

Grade 35 Titanium vs. S44536 Stainless Steel

Grade 35 titanium belongs to the titanium alloys classification, while S44536 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 35 titanium and the bottom bar is S44536 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 5.6
22
Fatigue Strength, MPa 330
190
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 41
78
Shear Strength, MPa 580
290
Tensile Strength: Ultimate (UTS), MPa 1000
460
Tensile Strength: Yield (Proof), MPa 630
280

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 320
990
Melting Completion (Liquidus), °C 1630
1440
Melting Onset (Solidus), °C 1580
1390
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 7.4
21
Thermal Expansion, µm/m-K 9.3
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.1
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 37
13
Density, g/cm3 4.6
7.7
Embodied Carbon, kg CO2/kg material 33
2.8
Embodied Energy, MJ/kg 530
41
Embodied Water, L/kg 170
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 49
89
Resilience: Unit (Modulus of Resilience), kJ/m3 1830
200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 61
17
Strength to Weight: Bending, points 49
17
Thermal Diffusivity, mm2/s 3.0
5.6
Thermal Shock Resistance, points 70
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 5.0
0
Carbon (C), % 0 to 0.080
0 to 0.015
Chromium (Cr), % 0
20 to 23
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.2 to 0.8
72.8 to 80
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 1.5 to 2.5
0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.8
Nitrogen (N), % 0 to 0.050
0 to 0.015
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 88.4 to 93
0 to 0.8
Vanadium (V), % 1.1 to 2.1
0
Residuals, % 0 to 0.4
0