MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. AISI 403 Stainless Steel

Grade 36 titanium belongs to the titanium alloys classification, while AISI 403 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
16 to 25
Fatigue Strength, MPa 300
200 to 340
Poisson's Ratio 0.36
0.28
Shear Modulus, GPa 39
76
Shear Strength, MPa 320
340 to 480
Tensile Strength: Ultimate (UTS), MPa 530
530 to 780
Tensile Strength: Yield (Proof), MPa 520
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 370
270
Maximum Temperature: Mechanical, °C 320
740
Melting Completion (Liquidus), °C 2020
1450
Melting Onset (Solidus), °C 1950
1400
Specific Heat Capacity, J/kg-K 420
480
Thermal Expansion, µm/m-K 8.1
9.9

Otherwise Unclassified Properties

Density, g/cm3 6.3
7.8
Embodied Carbon, kg CO2/kg material 58
1.9
Embodied Energy, MJ/kg 920
27
Embodied Water, L/kg 130
99

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
210 to 840
Stiffness to Weight: Axial, points 9.3
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
19 to 28
Strength to Weight: Bending, points 23
19 to 24
Thermal Shock Resistance, points 45
20 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.030
0 to 0.15
Chromium (Cr), % 0
11.5 to 13
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
84.7 to 88.5
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.6
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 52.3 to 58
0
Residuals, % 0 to 0.4
0