MakeItFrom.com
Menu (ESC)

Grade 36 Titanium vs. EN 1.1132 Steel

Grade 36 titanium belongs to the titanium alloys classification, while EN 1.1132 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade 36 titanium and the bottom bar is EN 1.1132 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11
12 to 24
Fatigue Strength, MPa 300
180 to 280
Poisson's Ratio 0.36
0.29
Shear Modulus, GPa 39
73
Shear Strength, MPa 320
260 to 310
Tensile Strength: Ultimate (UTS), MPa 530
370 to 490
Tensile Strength: Yield (Proof), MPa 520
240 to 400

Thermal Properties

Latent Heat of Fusion, J/g 370
250
Maximum Temperature: Mechanical, °C 320
400
Melting Completion (Liquidus), °C 2020
1460
Melting Onset (Solidus), °C 1950
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Expansion, µm/m-K 8.1
12

Otherwise Unclassified Properties

Density, g/cm3 6.3
7.9
Embodied Carbon, kg CO2/kg material 58
1.4
Embodied Energy, MJ/kg 920
18
Embodied Water, L/kg 130
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 59
38 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 1260
160 to 430
Stiffness to Weight: Axial, points 9.3
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 23
13 to 17
Strength to Weight: Bending, points 23
15 to 18
Thermal Shock Resistance, points 45
12 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.030
0.13 to 0.17
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.0035
0
Iron (Fe), % 0 to 0.030
98.6 to 99.57
Manganese (Mn), % 0
0.3 to 0.6
Niobium (Nb), % 42 to 47
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.16
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 52.3 to 58
0
Residuals, % 0 to 0.4
0