MakeItFrom.com
Menu (ESC)

Grade 37 Titanium vs. S44537 Stainless Steel

Grade 37 titanium belongs to the titanium alloys classification, while S44537 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade 37 titanium and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 22
21
Fatigue Strength, MPa 170
230
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
79
Shear Strength, MPa 240
320
Tensile Strength: Ultimate (UTS), MPa 390
510
Tensile Strength: Yield (Proof), MPa 250
360

Thermal Properties

Latent Heat of Fusion, J/g 420
290
Maximum Temperature: Mechanical, °C 310
1000
Melting Completion (Liquidus), °C 1650
1480
Melting Onset (Solidus), °C 1600
1430
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 21
21
Thermal Expansion, µm/m-K 8.9
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.4
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 6.8
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
19
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 31
3.4
Embodied Energy, MJ/kg 500
50
Embodied Water, L/kg 120
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76
95
Resilience: Unit (Modulus of Resilience), kJ/m3 280
320
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
18
Strength to Weight: Bending, points 26
18
Thermal Diffusivity, mm2/s 8.4
5.6
Thermal Shock Resistance, points 29
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 1.0 to 2.0
0 to 0.1
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 0
0 to 0.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0 to 0.030
0 to 0.040
Oxygen (O), % 0 to 0.25
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0.1 to 0.6
Sulfur (S), % 0
0 to 0.0060
Titanium (Ti), % 96.9 to 99
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0
Residuals, % 0 to 0.4
0