MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. AISI 415 Stainless Steel

Grade 9 titanium belongs to the titanium alloys classification, while AISI 415 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is AISI 415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 17
17
Fatigue Strength, MPa 330 to 480
430
Poisson's Ratio 0.32
0.28
Reduction in Area, % 28
50
Shear Modulus, GPa 40
76
Shear Strength, MPa 430 to 580
550
Tensile Strength: Ultimate (UTS), MPa 700 to 960
900
Tensile Strength: Yield (Proof), MPa 540 to 830
700

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 330
780
Melting Completion (Liquidus), °C 1640
1450
Melting Onset (Solidus), °C 1590
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.1
24
Thermal Expansion, µm/m-K 9.1
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 37
11
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 36
2.5
Embodied Energy, MJ/kg 580
35
Embodied Water, L/kg 150
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
1250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 43 to 60
32
Strength to Weight: Bending, points 39 to 48
26
Thermal Diffusivity, mm2/s 3.3
6.4
Thermal Shock Resistance, points 52 to 71
33

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 0
11.5 to 14
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
77.8 to 84
Manganese (Mn), % 0
0.5 to 1.0
Molybdenum (Mo), % 0
0.5 to 1.0
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 92.6 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0