MakeItFrom.com
Menu (ESC)

Grade 9 Titanium vs. SAE-AISI 9310 Steel

Grade 9 titanium belongs to the titanium alloys classification, while SAE-AISI 9310 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade 9 titanium and the bottom bar is SAE-AISI 9310 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11 to 17
17 to 19
Fatigue Strength, MPa 330 to 480
300 to 390
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 430 to 580
510 to 570
Tensile Strength: Ultimate (UTS), MPa 700 to 960
820 to 910
Tensile Strength: Yield (Proof), MPa 540 to 830
450 to 570

Thermal Properties

Latent Heat of Fusion, J/g 410
250
Maximum Temperature: Mechanical, °C 330
440
Melting Completion (Liquidus), °C 1640
1460
Melting Onset (Solidus), °C 1590
1420
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 8.1
48
Thermal Expansion, µm/m-K 9.1
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
4.4
Density, g/cm3 4.5
7.9
Embodied Carbon, kg CO2/kg material 36
1.8
Embodied Energy, MJ/kg 580
24
Embodied Water, L/kg 150
57

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89 to 110
120 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 1380 to 3220
540 to 860
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 43 to 60
29 to 32
Strength to Weight: Bending, points 39 to 48
25 to 27
Thermal Diffusivity, mm2/s 3.3
13
Thermal Shock Resistance, points 52 to 71
24 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.080
0.080 to 0.13
Chromium (Cr), % 0
1.0 to 1.4
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
93.8 to 95.2
Manganese (Mn), % 0
0.45 to 0.65
Molybdenum (Mo), % 0
0.080 to 0.15
Nickel (Ni), % 0
3.0 to 3.5
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0 to 0.15
0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0.2 to 0.35
Sulfur (S), % 0
0 to 0.012
Titanium (Ti), % 92.6 to 95.5
0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0

Comparable Variants