MakeItFrom.com
Menu (ESC)

Grade C-3 Titanium vs. S43037 Stainless Steel

Grade C-3 titanium belongs to the titanium alloys classification, while S43037 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade C-3 titanium and the bottom bar is S43037 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
160
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 13
25
Fatigue Strength, MPa 260
160
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 500
410
Tensile Strength: Yield (Proof), MPa 430
230

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
880
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 21
25
Thermal Expansion, µm/m-K 8.7
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.0
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 31
2.3
Embodied Energy, MJ/kg 510
32
Embodied Water, L/kg 110
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
88
Resilience: Unit (Modulus of Resilience), kJ/m3 880
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
15
Strength to Weight: Bending, points 31
16
Thermal Diffusivity, mm2/s 8.5
6.7
Thermal Shock Resistance, points 39
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
16 to 19
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
77.9 to 83.9
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.4
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 98.8 to 100
0.1 to 1.0
Residuals, % 0 to 0.4
0