MakeItFrom.com
Menu (ESC)

Grade C-6 Titanium vs. ASTM Grade HE Steel

Grade C-6 titanium belongs to the titanium alloys classification, while ASTM grade HE steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade C-6 titanium and the bottom bar is ASTM grade HE steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290
190
Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 9.0
10
Fatigue Strength, MPa 460
160
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 39
79
Tensile Strength: Ultimate (UTS), MPa 890
670
Tensile Strength: Yield (Proof), MPa 830
310

Thermal Properties

Latent Heat of Fusion, J/g 410
310
Maximum Temperature: Mechanical, °C 310
1100
Melting Completion (Liquidus), °C 1580
1400
Melting Onset (Solidus), °C 1530
1360
Specific Heat Capacity, J/kg-K 550
490
Thermal Conductivity, W/m-K 7.8
14
Thermal Expansion, µm/m-K 9.8
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
19
Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 30
3.5
Embodied Energy, MJ/kg 480
50
Embodied Water, L/kg 190
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
56
Resilience: Unit (Modulus of Resilience), kJ/m3 3300
240
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 55
24
Strength to Weight: Bending, points 46
22
Thermal Diffusivity, mm2/s 3.2
3.6
Thermal Shock Resistance, points 63
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 6.0
0
Carbon (C), % 0 to 0.1
0.2 to 0.5
Chromium (Cr), % 0
26 to 30
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
53.9 to 65.8
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.050
8.0 to 11
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.7 to 94
0
Residuals, % 0 to 0.4
0