MakeItFrom.com
Menu (ESC)

Grade C-6 Titanium vs. AWS ER120S-1

Grade C-6 titanium belongs to the titanium alloys classification, while AWS ER120S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade C-6 titanium and the bottom bar is AWS ER120S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 9.0
17
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 39
73
Tensile Strength: Ultimate (UTS), MPa 890
930
Tensile Strength: Yield (Proof), MPa 830
830

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Melting Completion (Liquidus), °C 1580
1460
Melting Onset (Solidus), °C 1530
1410
Specific Heat Capacity, J/kg-K 550
470
Thermal Conductivity, W/m-K 7.8
46
Thermal Expansion, µm/m-K 9.8
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.2
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 36
4.2
Density, g/cm3 4.5
7.8
Embodied Carbon, kg CO2/kg material 30
1.9
Embodied Energy, MJ/kg 480
25
Embodied Water, L/kg 190
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
150
Resilience: Unit (Modulus of Resilience), kJ/m3 3300
1850
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 55
33
Strength to Weight: Bending, points 46
27
Thermal Diffusivity, mm2/s 3.2
13
Thermal Shock Resistance, points 63
27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.0 to 6.0
0 to 0.1
Carbon (C), % 0 to 0.1
0 to 0.1
Chromium (Cr), % 0
0 to 0.6
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.5
92.4 to 96.1
Manganese (Mn), % 0
1.4 to 1.8
Molybdenum (Mo), % 0
0.3 to 0.65
Nickel (Ni), % 0 to 0.050
2.0 to 2.8
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0.25 to 0.6
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 2.0 to 3.0
0
Titanium (Ti), % 89.7 to 94
0 to 0.1
Vanadium (V), % 0
0 to 0.030
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0 to 0.4
0 to 0.5