MakeItFrom.com
Menu (ESC)

Grade CX2M Nickel vs. Grade 25 Titanium

Grade CX2M nickel belongs to the nickel alloys classification, while grade 25 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade CX2M nickel and the bottom bar is grade 25 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 45
11
Fatigue Strength, MPa 260
550
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 84
40
Tensile Strength: Ultimate (UTS), MPa 550
1000
Tensile Strength: Yield (Proof), MPa 310
940

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 990
340
Melting Completion (Liquidus), °C 1500
1610
Melting Onset (Solidus), °C 1450
1560
Specific Heat Capacity, J/kg-K 430
560
Thermal Conductivity, W/m-K 10
7.1
Thermal Expansion, µm/m-K 12
9.6

Otherwise Unclassified Properties

Density, g/cm3 8.7
4.5
Embodied Carbon, kg CO2/kg material 12
43
Embodied Energy, MJ/kg 160
700
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
110
Resilience: Unit (Modulus of Resilience), kJ/m3 220
4220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 18
62
Strength to Weight: Bending, points 17
50
Thermal Diffusivity, mm2/s 2.7
2.8
Thermal Shock Resistance, points 15
71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.020
0 to 0.080
Chromium (Cr), % 22 to 24
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0 to 1.5
0 to 0.4
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 15 to 16.5
0
Nickel (Ni), % 56.4 to 63
0.3 to 0.8
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
86.7 to 90.6
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4