MakeItFrom.com
Menu (ESC)

Grade CZ100 Nickel vs. Grade 25 Titanium

Grade CZ100 nickel belongs to the nickel alloys classification, while grade 25 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade CZ100 nickel and the bottom bar is grade 25 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
110
Elongation at Break, % 11
11
Fatigue Strength, MPa 68
550
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 69
40
Tensile Strength: Ultimate (UTS), MPa 390
1000
Tensile Strength: Yield (Proof), MPa 140
940

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 900
340
Melting Completion (Liquidus), °C 1350
1610
Melting Onset (Solidus), °C 1300
1560
Specific Heat Capacity, J/kg-K 450
560
Thermal Conductivity, W/m-K 73
7.1
Thermal Expansion, µm/m-K 11
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 19
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.8
4.5
Embodied Carbon, kg CO2/kg material 10
43
Embodied Energy, MJ/kg 140
700
Embodied Water, L/kg 230
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
110
Resilience: Unit (Modulus of Resilience), kJ/m3 54
4220
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 22
35
Strength to Weight: Axial, points 12
62
Strength to Weight: Bending, points 14
50
Thermal Diffusivity, mm2/s 19
2.8
Thermal Shock Resistance, points 14
71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 1.0
0 to 0.080
Copper (Cu), % 0 to 1.3
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0 to 3.0
0 to 0.4
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 95 to 100
0.3 to 0.8
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
86.7 to 90.6
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4