MakeItFrom.com
Menu (ESC)

Grade M35-1 Nickel vs. CC332G Bronze

Grade M35-1 nickel belongs to the nickel alloys classification, while CC332G bronze belongs to the copper alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade M35-1 nickel and the bottom bar is CC332G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
120
Elongation at Break, % 28
22
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 62
43
Tensile Strength: Ultimate (UTS), MPa 500
620
Tensile Strength: Yield (Proof), MPa 190
250

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 900
220
Melting Completion (Liquidus), °C 1280
1060
Melting Onset (Solidus), °C 1240
1010
Specific Heat Capacity, J/kg-K 430
440
Thermal Conductivity, W/m-K 22
45
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
11
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
12

Otherwise Unclassified Properties

Base Metal Price, % relative 55
29
Density, g/cm3 8.8
8.3
Embodied Carbon, kg CO2/kg material 8.2
3.4
Embodied Energy, MJ/kg 120
55
Embodied Water, L/kg 250
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 120
270
Stiffness to Weight: Axial, points 10
7.7
Stiffness to Weight: Bending, points 21
20
Strength to Weight: Axial, points 16
21
Strength to Weight: Bending, points 16
19
Thermal Diffusivity, mm2/s 5.7
12
Thermal Shock Resistance, points 17
21

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Carbon (C), % 0 to 0.35
0
Copper (Cu), % 26 to 33
80 to 86
Iron (Fe), % 0 to 3.5
1.0 to 3.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0 to 2.0
Nickel (Ni), % 59.8 to 74
1.5 to 4.0
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.3
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5