MakeItFrom.com
Menu (ESC)

Grade TDSiCr Steel vs. A360.0 Aluminum

Grade TDSiCr steel belongs to the iron alloys classification, while A360.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade TDSiCr steel and the bottom bar is A360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 590
75
Elastic (Young's, Tensile) Modulus, GPa 190
72
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 1950
180 to 320

Thermal Properties

Latent Heat of Fusion, J/g 270
530
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1440
680
Melting Onset (Solidus), °C 1400
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 46
110
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
30
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
100

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 1.5
7.8
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 48
1070

Common Calculations

Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 70
19 to 34
Strength to Weight: Bending, points 45
27 to 39
Thermal Diffusivity, mm2/s 12
48
Thermal Shock Resistance, points 58
8.5 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
85.8 to 90.6
Carbon (C), % 0.5 to 0.6
0
Chromium (Cr), % 0.5 to 0.8
0
Copper (Cu), % 0 to 0.1
0 to 0.6
Iron (Fe), % 96.6 to 97.8
0 to 1.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0.5 to 0.9
0 to 0.35
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 1.2 to 1.6
9.0 to 10
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25