MakeItFrom.com
Menu (ESC)

Grade Ti-Pd18 Titanium vs. S43037 Stainless Steel

Grade Ti-Pd18 titanium belongs to the titanium alloys classification, while S43037 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd18 titanium and the bottom bar is S43037 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 320
160
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
25
Fatigue Strength, MPa 350
160
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 710
410
Tensile Strength: Yield (Proof), MPa 540
230

Thermal Properties

Latent Heat of Fusion, J/g 410
280
Maximum Temperature: Mechanical, °C 330
880
Melting Completion (Liquidus), °C 1640
1440
Melting Onset (Solidus), °C 1590
1400
Specific Heat Capacity, J/kg-K 550
480
Thermal Conductivity, W/m-K 8.2
25
Thermal Expansion, µm/m-K 9.1
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.4

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 41
2.3
Embodied Energy, MJ/kg 670
32
Embodied Water, L/kg 270
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
88
Resilience: Unit (Modulus of Resilience), kJ/m3 1380
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 44
15
Strength to Weight: Bending, points 39
16
Thermal Diffusivity, mm2/s 3.3
6.7
Thermal Shock Resistance, points 52
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 2.5 to 3.5
0
Carbon (C), % 0 to 0.1
0 to 0.030
Chromium (Cr), % 0
16 to 19
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
77.9 to 83.9
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.050
0
Oxygen (O), % 0 to 0.15
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 92.5 to 95.5
0.1 to 1.0
Vanadium (V), % 2.0 to 3.0
0
Residuals, % 0 to 0.4
0