MakeItFrom.com
Menu (ESC)

Grade Ti-Pd8A Titanium vs. ASTM Grade HE Steel

Grade Ti-Pd8A titanium belongs to the titanium alloys classification, while ASTM grade HE steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd8A titanium and the bottom bar is ASTM grade HE steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
190
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 13
10
Fatigue Strength, MPa 260
160
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
79
Tensile Strength: Ultimate (UTS), MPa 500
670
Tensile Strength: Yield (Proof), MPa 430
310

Thermal Properties

Latent Heat of Fusion, J/g 420
310
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1660
1400
Melting Onset (Solidus), °C 1610
1360
Specific Heat Capacity, J/kg-K 540
490
Thermal Conductivity, W/m-K 21
14
Thermal Expansion, µm/m-K 8.7
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.5
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 6.9
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 49
3.5
Embodied Energy, MJ/kg 840
50
Embodied Water, L/kg 520
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 65
56
Resilience: Unit (Modulus of Resilience), kJ/m3 880
240
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 31
24
Strength to Weight: Bending, points 31
22
Thermal Diffusivity, mm2/s 8.6
3.6
Thermal Shock Resistance, points 39
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.1
0.2 to 0.5
Chromium (Cr), % 0
26 to 30
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.25
53.9 to 65.8
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.050
8.0 to 11
Oxygen (O), % 0 to 0.4
0
Palladium (Pd), % 0.12 to 0.3
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 98.8 to 99.9
0
Residuals, % 0 to 0.4
0