MakeItFrom.com
Menu (ESC)

Grey Cast Iron vs. 1050 Aluminum

Grey cast iron belongs to the iron alloys classification, while 1050 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grey cast iron and the bottom bar is 1050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
68
Elongation at Break, % 9.6
4.6 to 37
Fatigue Strength, MPa 69 to 170
31 to 57
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 69
26
Shear Strength, MPa 180 to 610
52 to 81
Tensile Strength: Ultimate (UTS), MPa 160 to 450
76 to 140
Tensile Strength: Yield (Proof), MPa 98 to 290
25 to 120

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Melting Completion (Liquidus), °C 1380
640
Melting Onset (Solidus), °C 1180
650
Specific Heat Capacity, J/kg-K 490
900
Thermal Conductivity, W/m-K 46
230
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
61
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
200

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
9.5
Density, g/cm3 7.5
2.7
Embodied Carbon, kg CO2/kg material 1.5
8.3
Embodied Energy, MJ/kg 21
160
Embodied Water, L/kg 44
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 37
5.4 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 27 to 240
4.6 to 110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 5.8 to 17
7.8 to 14
Strength to Weight: Bending, points 8.7 to 17
15 to 22
Thermal Diffusivity, mm2/s 13
94
Thermal Shock Resistance, points 6.0 to 17
3.4 to 6.2

Alloy Composition

Aluminum (Al), % 0
99.5 to 100
Carbon (C), % 3.1 to 3.4
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 92.1 to 93.9
0 to 0.4
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.5 to 0.7
0 to 0.050
Phosphorus (P), % 0 to 0.9
0
Silicon (Si), % 2.5 to 2.8
0 to 0.25
Sulfur (S), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050